本文目录一览:
谁知道智学网统一登录平台是那个网站?
智学网是一款供中学生们使用的手机学习工具,而且家长们使用它还能看到孩子在学校的学习情况,及时了解孩子更多最新的消息。
它通过为学校提供海量题库,云阅卷,在线评测等功能收集数据,为学生提供查分,考试报告,试题解析,个性化学习,为学校提供教学指导以及为家长提供成绩分析,学习周报,教师通知等服务的在线教育平台与应用工具。服务对象有老师,学生以及家长用户角色。您在使用智学网提供的各项服务之前,应仔细阅读本用户协议。您一旦使用智学网的服务,即视为您已了解并完全同意本服务条款各项内容,包括智学网对服务条款随时做的任何修改。
什么是知识图谱
知识图谱,是通过将应用数学、图形学、信息可视化技术、信息科学等学科的理论与方法与计量学引文分析、共现分析等方法结合,并利用可视化的图谱形象地展示学科的核心结构、发展历史、前沿领域以及整体知识架构达到多学科融合目的的现代理论。
知识图谱有什么用处?
“知识图谱的应用涉及到众多行业,尤其是知识密集型行业,目前关注度比较高的领域:医疗、金融、法律、电商、智能家电等。”基于信息、知识和智能形成的闭环,从信息中获取知识,基于知识开发智能应用,智能应用产生新的信息,从新的信息中再获取新的知识,不断迭代,就可以不断产生更加丰富的知识图谱,更加智能的应用。
如果说波士顿动力的翻跟头是在帮机器人锻炼筋骨,那么知识图谱的“绘制”则是在试图“创造”一个能运转的机器人大脑。
“目前,还不能做到让机器理解人的语言。”中国科学院软件所研究员、中国中文信息学会副理事长孙乐说。无论是能逗你一乐的Siri,还是会做诗的小冰,亦或是会“悬丝诊脉”的沃森,它们并不真正明白自己在做什么、为什么这么做。
让机器学会思考,要靠“谱”。这个“谱”被称为知识图谱,意在将人类世界中产生的知识,构建在机器世界中,进而形成能够支撑类脑推理的知识库。
为了在国内构建一个关于知识图谱的全新产学合作模式,知识图谱研讨会日前召开,来自高校院所的研究人员与产业团队共商打造全球化的知识图谱体系,建立世界领先的人工智能基础设施的开拓性工作。
技术原理:把文本转化成知识
“对于‘姚明是上海人’这样一个句子,存储在机器里只是一串字符。而这串字符在人脑中却是‘活’起来的。”孙乐举例说。比如说到“姚明”,人会想到他是前美职篮球员、“小巨人”、中锋等,而“上海”会让人想到东方明珠、繁华都市等含义。但对于机器来说,仅仅说“姚明是上海人”,它不能和人类一样明白其背后的含义。机器理解文本,首先就需要了解背景知识。
那如何将文本转化成知识呢?
“借助信息抽取技术,人们可以从文本中抽取知识,这也正是知识图谱构建的核心技术。”孙乐说,目前比较流行的是使用“三元组”的存储方式。三元组由两个点、一条边构成,点代表实体或者概念,边代表实体与概念之间的各种语义关系。一个点可以延伸出多个边,构成很多关系。例如姚明这个点,可以和上海构成出生地的关系,可以和美职篮构成效力关系,还可以和2.26米构成身高关系。
“如果这些关系足够完善,机器就具备了理解语言的基础。”孙乐说。那么如何让机器拥有这样的“理解力”呢?
“上世纪六十年代,人工智能先驱麻省理工学院的马文·明斯基在一个问答系统项目SIR中,使用了实体间语义关系来表示问句和答案的语义,剑桥语言研究部门的玛格丽特·玛斯特曼在1961年使用Semantic Network来建模世界知识,这些都可被看作是知识图谱的前身。”孙乐说。
随后的Wordnet、中国的知网(Hownet)也进行了人工构建知识库的工作。
“这里包括主观知识,比如社交网站上人们对某个产品的态度是喜欢还是不喜欢;场景知识,比如在某个特定场景中应该怎么做;语言知识,例如各种语言语法;常识知识,例如水、猫、狗,教人认的时候可以直接指着教,却很难让计算机明白。”孙乐解释,从这些初步的分类中就能感受到知识的海量,更别说那些高层次的科学知识了。
构建方式:从手工劳动到自动抽取
“2010年之后,维基百科开始尝试‘众包’的方式,每个人都能够贡献知识。”孙乐说,这让知识图谱的积累速度大大增加,后续百度百科、互动百科等也采取了类似的知识搜集方式,发动公众使得“积沙”这个环节的时间大大缩短、效率大大增加,无数的知识从四面八方赶来,迅速集聚,只待“成塔”。
面对如此大量的数据,或者说“文本”,知识图谱的构建工作自然不能再手工劳动,“让机器自动抽取结构化的知识,自动生成‘三元组’。”孙乐说,学术界和产业界开发出了不同的构架、体系,能够自动或半自动地从文本中生成机器可识别的知识。
孙乐的演示课件中,有一张生动的图画,一大摞文件纸吃进去,电脑马上转化为“知识”,但事实远没有那么简单。自动抽取结构化数据在不同行业还没有统一的方案。在“百度知识图谱”的介绍中这样写道:对提交至知识图谱的数据转换为遵循Schema的实体对象,并进行统一的数据清洗、对齐、融合、关联等知识计算,完成图谱的构建。“但是大家发现,基于维基百科,结构化半结构化数据挖掘出来的知识图谱还是不够,因此目前所有的工作都集中在研究如何从海量文本中抽取知识。”孙乐说,例如谷歌的Knowledge Vault,以及美国国家标准与技术研究院主办的TAC-KBP评测,也都在推进从文本中抽取知识的技术。
在权威的“知识库自动构建国际评测”中,从文本中抽取知识被分解为实体发现、关系抽取、事件抽取、情感抽取等4部分。在美国NIST组织的TAC-KBP中文评测中,中科院软件所—搜狗联合团队获得综合性能指标第3名,事件抽取单项指标第1名的好成绩。
“我国在这一领域可以和国际水平比肩。”孙乐介绍,中科院软件所提出了基于Co-Bootstrapping的实体获取算法,基于多源知识监督的关系抽取算法等,大幅度降低了文本知识抽取工具构建模型的成本,并提升了性能。
终极目标:将人类知识全部结构化
《圣经·旧约》记载,人类联合起来兴建希望能通往天堂的高塔——“巴别塔”,而今,创造AI的人类正在建造这样一座“巴别塔”,帮助人工智能企及人类智能。
自动的做法让知识量开始形成规模,达到了能够支持实际应用的量级。“但是这种转化,还远远未达到人类的知识水平。”孙乐说,何况人类的知识一直在增加、更新,一直在动态变化,理解也应该与时俱进地体现在机器“脑”中。
“因此知识图谱不会是一个静止的状态,而是要形成一个循环,这也是美国卡耐基梅隆大学等地方提出来的Never Ending Learning(学无止境)的概念。”孙乐说。
资料显示,目前谷歌知识图谱中记载了超过35亿事实;Freebase中记载了4000多万实体,上万个属性关系,24亿多个事实;百度百科记录词条数1000万个,百度搜索中应用了联想搜索功能。
“在医学领域、人物关系等特定领域,也有专门的知识图谱。”孙乐介绍,Kinships描述人物之间的亲属关系,104个实体,26种关系,10800个事实;UMLS在医学领域描述了医学概念之间的联系,135个实体,49种关系,6800个事实。
“这是一幅充满美好前景的宏伟蓝图。”孙乐说,知识图谱的最终目标是将人类的知识全部形式化、结构化,并用于构建基于知识的自然语言理解系统。
尽管令业内满意的“真正理解语言的系统”还远未出现,目前的“巴别塔”还只是在基础层面,但相关的应用已经显示出广阔的前景。例如,在百度百科输入“冷冻电镜”,右竖条的关联将出现“施一公”,输入“撒币”,将直接在搜索项中出现“王思聪”等相关项。其中蕴含着机器对人类意图的理解。
为什么知识图谱可以应用于问答系统
知识图谱与问答系统
摘要: 领域知识图谱,是下一代搜索引擎、问答系统等智能应用的基础设施,目前出现的产品有:百度“知心”、搜狗“知立方”等。本篇将介绍知识图谱基础知识,及其在自然语言处理方面(主要是问答系统)的应用。
1. 前言
知识图谱(knowledge graph),是下一代搜索引擎、问答系统等智能应用的基础设施,目前出现的产品有:百度“知心”、搜狗“知立方”等。本篇将介绍知识图谱基础知识,及其在自然语言处理方面(主要是问答系统)的应用。
2. 知识图谱概念
知识图谱,是一种基于有向图(directed graph)的数据结构,由节点(points)及有向边(directed edges)组成,图中的每个节点称为实体(Entity),边代表实体间的逻辑关系(Relation)。
举一个例子,这是一个简单地描述旅游景点的知识图谱:
现在来解释为什么“知识图谱是下一代搜索引擎、问答系统等智能应用的基础设施”,如果把智能系统看成一个大脑,那么知识图谱就是大脑中的一个知识库,它使得机器能够从“关系”的角度去分析、思考问题。以上图为例,从知识图谱中可以获取“泰山的海拔高度为1545米”、“衡山和恒山发音相同”等简单知识。
3. 知识图谱的表示
知识图谱可以使用三元组(entity-1,relation,entity-2)来表示,每一条记录描述一个事实,例如:(五岳,五岳之一,泰山)表示“泰山是五岳之一”这样一个事实。需要注意的是,如果relation 是确定的,那么entity-1与entity-2 的位置不能够颠倒的,因为一个三元组描述一条有向边(事实);实体不一定得是现实生活中的一个具体事物,也可以是事物的一个属性值,此时关系就是该属性。
我们用三元组来存储知识图谱,这时还需要考虑一个问题,那就是实体识别(Entity Recognition)与实体消歧(Entity Disambiguation)。例如,实体“苹果”有可能是指水果苹果,也可能是指iphone。这时,我们对知识图谱需要做一些处理,修改一下搜索策略。
在建立知识图谱过程中,若发现歧义,则再增添对应上级节点,在筛选“苹果”一词时使用上级节点来消歧。这里再次强调知识图谱仅是基础设施 。后面会通过几个例子说明知识图谱的应用价值;再介绍知识推理(Knowledge Reasoning)技术,即怎样通过与用户互动教会智能系统完善知识图谱。
4. 知识图谱的应用
传统搜索引擎只是简单地根据用户输入的关键词去筛选目标网页,然后给出一堆网页链接。知识图谱的应用,除了给出相应的网页链接外,还会尝试提供一些更加智能化的答案。例如,用户在必应搜索输入“taj mahal”将得到如下结果:
这里提供泰姬陵的近义词、旅游信息、地理位置、古代世界七大奇迹等,从而更好地发掘用户意图, 而不像传统搜索引擎那样死板,需要用户自己一条一条去筛选信息, 这样知识图谱技术就具有很大的商业价值了。
又例如,我直接在百度搜索输入“乒乓球”, 得到以下结果(其实我只是想搜索一下“张继科”,但是一时间忘了他的名字):
同时,知识图谱的应用能够使得搜索引擎获得一定的推理能力。举一个例子,在百度搜索输入“梁启超的儿子的妻子”,传统搜索引擎只是简单地匹配网页,很难真正地理解用户意图,更别说回答这个问题了。然而知识图谱却可以令问题变得简单起来,我们先从知识库中获取梁启超的儿子是梁思成,然后再获取梁思成的妻子是林微因。
这样就能增强搜索引擎与用户间的互动,逐步变成一个智能问答系统。
5. 知识推理技术
这里再次强调知识图谱仅是基础设施,因为它真的很简单,也没有什么高大上的技术,我们仅仅只是想将知识用这样一个形式存起来,以便由简单的知识学习出更高深的知识。举一个例子,知识图谱中仅存有如下信息:
那么智能问答系统是无法回答类如“康熙与乾隆之间是什么关系?”知识推理类的问题的,这时可以用过简单地加入人工规则:“父亲+父亲→祖父”来更新知识图谱,或者直接从用户互动中学习规则,当然用户互动时就需要上统计知识了,不能说有网友回答“国籍相同关系”那么所有的祖父与孙子都是“国籍相同关系”。
接下来我们来看一个更复杂的例子,在百度搜索引擎中输入“孕妇可以吃荔枝吗?”得到如下结果:
这时智能问答系统可以返回“59%的网友认为能吃,28%的网友认为不能吃,13%的网友认为不能吃”。若用户继续问“不能吃的理由是什么?”,那就返回“不能吃”的网友回答。下面通过这个例子来思考统计机器学习技术在知识推理中的应用。
我们分析一下,这些“网友回答”有些来自“宝宝树”,有些来自“有问必答网”,有些来自“育儿网”,我们可以利用爬虫去爬这些网站的问题及其回答,然后对问题做聚类,先构建如下知识图谱:
具体问题与回答之间的逻辑关系边一开始留空,我们再对语义边上分类技术,把空余的边填补完整,当然也可能误分类,例如百度例子中的第一个回答,“慎吃”被归为“能吃”。最后再对这些边做统计,就可以回答类似问题,利用语料库做知识推理,学习知识库里没有的知识,完善知识图谱。
Reference
知识图谱——机器大脑中的知识库
知识图谱的应用
知识图谱,为移动搜索而生
知识图谱概念是什么?
知识图谱本质上是语义网络,是一种基于图的数据结构,由节点(Point)和边(Edge)组成。
知识图谱又称为科学知识图谱,其本质上是语义网络,是一种基于图的数据结构,由节点(Point)和边(Edge)组成。知识图谱通过将应用数学、图形学、信息可视化技术、信息科学等学科的理论与方法与计量学引文分析、共现分析等方法结合。
构建方式
知识图谱有自顶向下和自底向上两种构建方式。所谓自顶向下构建是借助百科类网站等结构化数据源,从高质量数据中提取本体和模式信息,加入到知识库中;所谓自底向上构建,则是借助一定的技术手段,从公开采集的数据中提取出资源模式,选择其中置信度较高的新模式,经人工审核之后,加入到知识库中。
以上内容参考:百度百科-知识图谱
我想查一张照片看是不是网络图片怎么查
想查找照片是否出自网络,可以用“百度识图”功能,具体操作方法如下:
一、在百度上搜索“百度识图”,如图:
二、点击“百度识图”后出现以下图片:
三、点击“识图一下”,则会出现以下对话框:
四、输入图片的方法具体有以下三种:
点击“本地上传”,然后从自己的电脑里选择图片进行搜索,如图:
2.把电脑本地的图片直接拖拽到上图“拖拽图片到此处试试”上,则会显示“即将打开文件”的操作,点击进行搜索,如图:
3.若想查找网络上的图片出现的频率,可以右键图片,选择“属性”,复制网址,再在对话框里黏贴网址即可,如图:
扩展资料:
“世界很复杂,百度更懂你”,常规的图片搜索,是通过输入关键词的形式搜索到互联网上相关的图片资源,而百度识图则能实现用户通过上传图片或输入图片的url地址,从而搜索到互联网上与这张图片相似的其他图片资源,同时也能找到这张图片相关的信息。
参考资料:百度识图百度百科